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Abstract 

The connect ion between the integrals o f  the  mot ion  of  a q u a n t u m  sys tem and its Green 
funct ion  is established. The  Green funct ion  is shown to be the  e igenfunct ion o f  the  
integrals o f  the  mot ion  which describe initial poin ts  o f  the  system trajectory in the  phase 
space of average coordinates and moments. The explicit expressions for the Green functions 
of the N-dimensional system with the Hamiltonian which is the most general quadratic 
form of coordinates and momenta with time-dependent coefficients is obtained in co- 
ordinate, momentum, and coherent states representations. The Green functions of the 
nonstationary singular oscillator and of the stationary Schr6dinger equation are also 
obtained. 

t. Introduction 

In the present article we want to elucidate on the connection between the 
integrals of the motion of a quantum system and its Green function. This 
connection proves to be very simple, almost trivial: the Green function is the 
eigenfunction of the integrals of the motion describing initial points of the 
system trajectory in the phase space. Nevertheless we want to discuss this 
problem in detail for two reasons. The first reason is that this problem, in spite 
of its simplicity, was not considered distinctly in any of available textbooks 
or original papers. (Some notes on this problem were made by Malkin and 
Man'ko (1970; 1971) and Aronson et aI. (1974); in the last paper the connection 
of the integrals of the motion with the concept of the dynamical symmetry 
was also discussed.) The second reason is that using the equations connecting 
the Green function and integrals of the motion one can obtain the explicit 
expressions for the Green functions of some systems which are undoubtedly 
very interesting from the viewpoint of physics. 

Particularly, using this approach we shall obtain the Green function in the 
case when the Hamiltonian is the most general (i.e. including linear terms) 
quadratic form of coordinates and momenta with time-dependent coefficients. 
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Earlier, several authors considered only special examples of general quadratic 
systems. For example, general quadratic systems with time-dependent co- 
efficients but without linear terms were considered by Chernikov (1967) and 
Popov (1973). The Green function of the most general quadratic system was 
obtained for the first time by Malkin etaL (1971; 1973) with the aid of the 
coherent states method, but it was not given in the form convenient for appli- 
cations. Coherent states for this problem were also constructed by Holz (1970). 

The problem of calculating the Green function of a quadratic system has 
much in common with the problem of calculating the kernel of the unitary 
transformation of the Hilbert space of quantum states corresponding to some 
linear canonical transformation of operators acting in this space. Berezin 
(1966) has investigated in detail the last problem in the case of finite- and 
infinite-dimensional systems of operators satisfying both Bose's and Fermi's 
commutation relations. Later the analogous problem (in the case of the finite 
system of coordinate and momentum-type operators) was considered by 
Moshinsky and Quesne (1971), Boon and Seligman (t973) and Wolf (1974). 

Our results are formally analogous to that obtained in these papers. However, 
there is a significant physical difference. In all mentioned papers the linear 
transformations of the operators were considered as given a priori, while in 
the present paper these transformations are to be determined by the Hamiltonian 
of the system. The second difference is that in the papers mentioned above the 
kernels of the unitary transformations were calculated up to an arbitrary phase 
factor, while the Green functions obtained in this paper are determined uniquely. 

Besides the general quadratic system we shall also consider the singular non- 
stationary oscillator to illustrate once more general relations. After this we 
shall calculate the Green functions of the stationary Schr6dinger equation for 
some simple systems. 

2. Integrals o f  the Motion and the Green Function 

Let us consider an arbitrary quantum system withN degrees of freedom. The 
time evolution of the wave function '~(x, t) describing any pure state of this 
system is completely determined by the Green function G(x, y; t) according 
to the relation 

• (x, t) =fG(x, y; t)~(y, 0) dy = Oq/(x, 0) 

x =- (xl ,  x2 . . . .  XN) (2.1) 

The Green function is the kernel of the evolution operator C r which satisfies 
the equation 

a~r ~ ,  ~r(0) = ~ (2.2) ih ~ =  " 

where/~ is the unity operator, and / t  is the Hamiltonian of the system. The 
operator H may be both stationary and nonstationary; moreover, it may be 
nonhermitian. The only significant restriction on H is that the evolution 
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operator must exist and have the inverse one. If a complete system of solutions 
to the Schr6dinger equation ('IZn(X, t)} is known, then the Green function can 
be expressed as 

G(x, y; t) = ~ ~n(X, t)q~*(y, 0) 
n 

However this method of calculating the Green function is not the most con- 
venient one, because it requires.the knowledge of all functions 't~n. We want 
to show that the Green function can be obtained with the aid of a much more 
convenient procedure, provided the integrals of the motion are known. 

We define the integral of the motion as such operator [ that transforms every 
solution of the Schrodinger equation into a solution of the same equation. 
This means that [mus t  satisfy in the space of the solutions of the Schr6dinger 
equation the equation [° ] ih ~- - h ,  I ' I I=0 (2.3) 

If the Hamiltonian is a hermitian operator, an integral of the motion has the 
property that its average values (averaged with respect to solutions of the 
Schr6dinger equation) do not change in time: 8/atf'~*]g' dx = 0. For non- 
hermitian Hamiltonians this property does not hold: an operator whose average 
values do not change in time must satisfy not equation (2.3), but the following 
one: ih(~/~t)I = 1-14[-IIt (the cross means the hermitian conjugation). 

Now let us note that every quantum system withN degrees of freedom has 
2N independent integrals of the motion. This statement follows immediately 
the correspondence principle, since every classical system has 2N independent 
integrals of the motion. One can choose, e.g., the initial values of coordinates 
and momenta as such independent integrals of  the motion. The corresponding 
quantum integrals of the motion can be expressed as follows: 

5[ = 0 X 0 - 1  ; P =" / . ~ 0  -1 (2.4) 

(one can easily verify that the operators (2.4) satisfy equation (2.3) due to 
equation (2.2)). It is convenient to introduce the 2N-dimensional vectors 
q = (p, x) and Q = (P, X). Then two equations (2.4) can be combined into 
one relation Q = g)/IO-*. The commutation relations between operators 0 i 
are the same as between (t], although the operators Q1 can be nonhermitian 
(if the tlamiltonian is nonhermitian). 

Let us note now that at the initial moment the Green function equals the 
delta-function: 

G(x, y; 0) = 8(x - y); G(x, y; t) = 0{1  }a(x  - y) (2.5) 

and that the action of the operator/i on 8(x - y) as the function of the first 
argument x is equivalent to the action of the transposed operator/l T on 
8(x - y) as the function of y 

/ i { l  }~(X -- y) =/i~2 }8(x - y) (2.6) 
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The symbol i(1,2 }~(x, y) means that the operator ] acts on ~ as the function 
of the first or second variable, respectively, while another variable should be 
considered as a parameter. In the coordinate representation ~:T = ~:, ~T ___ _~ .  
Acting on both parts of equation (2.6) by the evolution operator 0 one obtains 

U(1 )q(~ )~(x - y) = ( 0 @  -~) (~)~7(1)~(x - y) = 0 (1)O(x, y; 0;  

^ ^ T  ^ T  ^ T 
U(l)q(2) f (x  - y) = q(2)U(1)8(x - y) = q (2)G(x, y; t) 

Consequently, the Green function satisfies the following vector equation 
(really this is the system of 2N scalar equations): 

0 (1)G(x, y; t) r = q (2)G(x, y; t) (2.7) 

or, in a more detailed form 

:~(1 )G(x, y; t) = yG(x, y; t) (2.7a) 

P(1 )G(x, y; t) =/h -~  G(x, y; t) (2.7b) 

So the Green function in the coordinate representation is the eigenfunction 
of the integral of the motion X. This fact is evidently the consequence of the 
physical significance of the Green function as the transition amplitude from 
the initial point y into the final one x, and the integral of the motion )~ as the 
operator of the initial coordinate. The equation (2.7a, b) determine the Green 
function to within a constant factor depending only on time. To find this 
factor one should take into account the Schr6dinger equation (2.2). 

In the following Sections we shall consider in detail two cases when equation 
(2.3) can be solved exactly. However, even if the exact expressions for the 
operators X and P cannot be obtained, one can write approximate expressions 
for these operators using the Beiker-Hausdorff formula 

/ g 2! kih] 

or some others of the same type. Then one can obtain approximate expressions 
for the Green function. Such procedure may prove to be especially useful for 
approximate calculations of the equilibrium density matrix (it can be obtained 
from the Green function by means of the substitution t = -i'h/KT, where T is 
the absolute temperature and ~ is the Bolzmarm constant). 

Equations (2.7a, b) are not symmetrical with respect to the variables x and 
y. But one can write instead of equation (2.7b) another one, which is similar 
to equation (2.7a) 

Y(2iG(x, y; t) = xG(x, y; t) (2.8) 

= (~]- 1 ~10) T (2.9) 
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The proof is analogous to that of equation (2.7), if one takes into account 
that G(x, y; t) = U~2}6(x - y). The system of equations (2.7a) and (2.8) is 
symmetrical with respect to x and y. If the operator x can be expressed as a 
function of the operators ~( and P: ~ =/)-1 ~((f = f(~(, ~,), _ then comparing 
this relation with equation (2.9) one can write the following expression for 
the operator ~( as the function of the operators 2 and P: Y = [f ( i ,  ~)] T. 
Although at the initial moment the operator ~" coincides with the operator ~, 
it is not the integral of the motion for the system with the Hamiltonian/), 
since Y satisfies not equation (2.2) but the equation 

i / ~  Y : [~, 9 ] ;  ~ =  ( ~ r - , / ~ r  (2.10) 

If the Hamiltonian does not depend on time, the operator U commutes with 
H, because in this case ~r = exp(-(it/h)~. Then f f  =/~/r. This means that if 
the Hamiltonian is stationary and symmetrical (H = ~/T), then the Green 
function is sy;mmetrical with respect to its arguments x and y, due to the 
relation X = Y. If the Hamiltonian is only stationary, then equation (2.3) 
and (2.10) lead to the relation Y(t) = ~KT(--t). Therefore in the case of 
stationary Hamiltonians it is sufficiently as a rule to solve only equation 
(2.7a) which determines the dependence of the Green function on the first 
variable x; after this the dependence on the second variable y can be established 
without solving differential equations. 

For example let us consider the case when the operator X can be expressed 
as a function of the operators ~ and ~, all products 2~ being symmetrized. 
Suppose the solution to equation (2.7a) to be analytical with respect to 
coefficients of this function (these coefficients depend on time). Then the 
dependence of the Green function on the second argument can be derived 
from the known dependence on the first argument simply by analytical 
continuation, if one makes in all coefficients the substitution t -~ - t  and 
changes signs of the coefficients standing before odd powers of the operators 
/3~ in the expression for X (the transposition transforms the operator p~ into 
-p~).  These reasonings will be illustrated in the next Section. 

Sometimes it may be more convenient to use not operators Q] but some 
functions of them ~(Q]) ,  K,/' = 1, 2 , . . .  2N (These functions are of course 
integrals of the motion too.) Then equations (2.7a, b) should be replaced by 
the following ones 

T 
CK(Q){I}G(x, y; t) = [¢~(~1)1 ~2}G(x, y; t) 

= 1, 2 . . . .  2N (2.11) 

Equation (2.8) should be changed analogously. 
Up to now we considered only the coordinate representation. However 

equations similar to equations (2.7a, b) can be written in an arbitrary repre- 
sentation according to the following scheme. Let 2N independent operators 
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c~ exist, and their action on the first argument of the Green function at the 
initial moment is equivalent to the action of some operators ~(dj) on the 
second argument 

~] {1 }G(x, y; 0) = ~0(a) {2 }G(x, y; 0) (2.12) 

(here x and y are arbitrary variables on which the Green function depends; 
their physical meaning depends on the representation chosen). If the integral 
of the motion f) = Uc]~ -1 is known, the Green function is the solution to the 
equation 

I) (1)a(x,  y; t) = ~(fi)(2)G(x, y; t) (2.13) 

For example, in the momentum representation one obtains again equation 
(2.7a, b) in which one should make the substitution x ~ p and take into 
account that in this representation 

To illustrate the general scheme let us consider the representation occurring 
very useful for solving many physical problems, namely the coherent states 
representation (Glauber, 1963; Bargmann, 1961). In this representation every 
ket-vector If) is represented by the entire analytic function of a complex 
argument f(~,*) = exp(½1Qt [ 2) (alf} (the asterisk means the complex conjugation), 
where 1~)is the eigenstate of nonhermitian operators d] satisfying the commuta- 
tion relations of boson creation and annihilation operators: 

ajJot)=otjlc¢); Gt = (~Xl, o~ 2 . . . .  0~N); / =  1,2 . . . .  N 

[8j,dK] =0;  [d/,d~+] =5],~; ~ = ( ~ 1 , 8 2 , . . . t i N )  (2.14) 

It is well known that the spectrum of operators dj consists of all complex 
numbers. The operators fi and fi* act on the functionsf(~*) according to the - 
formulae 

:if(:t*) = - ~ f ( a t * ) ;  fi÷f(~*) = ~*f(~*) (2.15) 

and the kernel of the unity operator is G(at*,~; 0) = exp(at*~): 

= f exp(at*J~)f(fl*) dp(#); 

d p ~ )  = 7"( - g  exp(-1~12) dRef ld  Imfl (2.16) 

Therefore equation (2.12) can be written as follows: 
T 

a {1 }G(~*,tg; 0) = #e ~*~ = ~{2}G(~*,fl; 0); 

~+ . ~ ct*~ T 
a (1)G(~ ,~; {3) = ~ e  = (~i+)(2)G(z*,~; 0) (2.17) 
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(Note that one should act on the second argument 18 not by the operators fi 
and fi+, but by the complex conjugate operators a* = (fi+)T and (fi+)* = fiT. 
Introducing the integrals of the motion A = 0"fi0 -1 and F = ~rfi+~-I (if the 
Hamiltonian is nonhermitian, F ~ A+; nevertheless the relations [~{j, PK] = 6jK 
always hold), one obtains the equations for the Green function: 

i{l }G(~*,18; t) =18G(~*,jg; t) 

. {I}G(~*,~; t) : ~ G(~ ,18; t) (2.18) 

The physical significance of the function G(x*,18; t) is that the value 
G(0t*,p; t) exp [-½(l~ j2 + [1812)] is the transition amplitude from the initial 
coherent state ]/~, 0) into the final one I~, t). One of the main advantages of 
the coherent states representation is that the Green function in this represen- 
tation has no singularities (it is an entire analytical function). The transformation 
to the coordinate representation can be performed by the formula 

G(x, y) : t(xl~)G(at*,/~) ~*[y)  x exp [½(}a*[ 2 + 11812)] d ~ )  d#~) 

(2.19) 

where (x [~> is the coordinate wave function corresponding to the ket-vector 

3. The General Quadratic System 

The Hamiltonian of the most general N-dimensional quadratic system can 
be written as follows, 

= ~ ( t ) ~  + c(t)~ + ~ t ) ;  

q= (Px); C= (Cl]; \c2] B = H ~  b4 b2]] (3.1) 

N-dimensional vectors Cl and c 2 and N-dimensional matrices bj,] = 1, 2, 3, 4, 
may be arbitrary complex functions of time. Evidently, one can always believe 
the matrix B to be symmetrical. One can easily verify that the 2N-dimensional 
vector 

0 = = A(t)~l +A(t); A= k3 ; A= 02 

is the integral of the motion coinciding with ?t at the initial moment, provided 
the 2N-dimensional matrix A(t) and vector A (t) satisfy the following system 
of ordinary differential equations of the first order: 

i = A Z m  A ( 0 ) = E ~ ;  OEN oN J = (2.3) 
J = AZC; ~ (0) = o; 
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E N is the N x N unity matrix. It is well known that the solution to the system 
(3.3) always exists, and it is unique. Further we shall show that the Green 
function is completely determined by the matrices X], ] = 1, 2, 3, 4 and vectors 
61 and 62. Since the commutator of integrals of the motion is the integral of 
the motion too, the following relations are valid: [0 k Q~ ] = [@ ~ ] = -ifi  2;jk. 
Therefore the matrix A must satisfy the relation AGA = ~3, i.e. it must be 
symplectic (see also Berezin, 1966; Moshinsky and Quesne, 1971). The wave 
means a transposed matrix. The symplectic condition imposes the following 
restrictions on the elements of the matrix A (these elements are generally 
speaking complex, except the special case when the Hamfltonian is hermitian 
and consequently the matrix B is real): 

X2~,~ = x~x2 x&1 - x3?,z = EN 

~k2)k 4 = X2~ 3 ~ 4 X l  - -~2)k  3 = E N 

XlX3 =3,3Xl ~'1 ' 
det A = 1 

(3.4) 

The Green function satisfies the equations (see equations (2.7a, b) and (3.2)) 

-ihX3 ~x + X4x + ~2 G(x, y; t) = yG(x, y; t) 

- ihX  1 ~xx+X2x+~l G ( x , y ; t ) = i h  G(x,y; t )  

If det X 3 ~ 0, these equations can be easily integrated, so that 

I i G(x, y; t) = exp ~ t )  - ~ [xX~ 1X4x - 2xX31 y + 

+ yXlX31y + 2xX31~2 + 2y(~1 - XlX3162)]} 
! 

Note that the matrices X~ 1 ?'4 and Xl X31 are symmetrical, as well as any matrix 
/1 which may occur further in a quadratic form of the type z/~z. This can be 
easily proved in every case with the aid of equation (3.4). To find the phase 
¢(t) one should substitute G(x,  y; t) into the Schr6dinger equation. Then the 
following relation can be obtained: 

i 1 i i 
(o = ~ r r (X ; tX4b l  - b3) + ~- clX; 6 2 - ~-£ ~2~31bl  ~.3162 -- ~- 

(there is a misprint in the similar expression in the paper by Malkin et al. 
(1973), equation (18)). This equation can be easily integrated, if one takes into 
account the relations following equation (3.3): X4bl = -X 3 + )-3 b3; 6z = 
X3c2 - X4c 1 and the identity Tr(XX -j ) = d/dt  in det X(t). The time-independent 
constant is determined by the requirement lim G(x, y; t) = ~(x - y). Having 

t--~+O 
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performed all calculations one can obtain the following expression for the 
Green function: 

i -1 _ G(x, y;t)=(-2zri )-N/2(det ~a)-l/2 exp{---~[x~3 ~,4 x 

-- 2x~kaly + yXlX~ly + 2xX3162 + 

+ 2y(61 - XlX~lt~2) + 62Xt X;162 - 2 f (~t62 -~b)d (3.5a) 
0 

If the matrix A and the vector A are real, then the function G(x, y) (3.5a) 
can be considered as the kernel of th e unitary transformation corresponding to 
the linear canonical transformation of operators ~ and 0 (3,2). In this inter- 
pretation formula analogous to (3.5a) were obtained (to within a phase factor) 
by Moshinsky and Quesne (1971) (when d = 0) and Boon and Seligman (1973) 
(A ~0). 

We want to write also formulae for the Green function in the momentum 
representation G(pa,pl ; t) and for the functions G(p2, xl ; t) and G(x2, Pl ; t) 
- the transition amplitudes form the initial coordinate eigenstate I xl ; O) into 
the final momentum eigenstate [p2; t) and vice versa. All these functions can 
be obtained either with the aid of equations (2.I 3), (2.7) and (3.2) or by means 
of the Fourier transformation of equation (3.5a). 

If[  G(p2, Pl; t) = (27rih)-N/2(det)k2) - 1 1 2  e x p  ~-~ pzX] 1 ~qP2 -- 

--2p2X21pl + plX43,21p1 + 2p2X~l t~l + 2p1(62 -X4X21 ~1)+ 

+ i~1k4X21151 -- 2 f  (i~t~l + ~) d (3.5b) 
0 

G(x2, Pl ;t)=(2~h)-N/2(det ~l)-l/2 exp(-2~ [x2~kll~k2x 2 - 

-- 2X2XllPl -- plXaXllPl + 2x2Xl 1 t~ 1 - 2pl(t~ 2 - 3,3Xl 1 t~ 1) -- 

--~l~k3~kll ~1 + 2 j  (i~261 + cb) drt} (3.5c) 

l a~ 1 __ G(p2,xl;t)=(2714A)-N/2(detX4)-l/2exp{-~h[p2~k4~,3p 2 

- 2p2X4axl -xlXeX41x1 + 2p2X4132 - 2xjt(Ol - X2X4162) - -  

' 1) - ti27,27~41 62 + 2~(~102 --~)  dr (3.5d) 
0 

Let us consider the case when the Hamiltonian does not depend on time. 
Then the expression for the Green function can be simplified. Since the 
operator X equals Xa0 + X4~ +~2, the operator ~( must be equal to Xr(--t) = 
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- h s ( - t ) ~  + ~i 2(- t )  + h4(-t)R. Besides, the argument of the exponent in the 
right-hand part of equation (3.5a) is the analytical function with respect to 
the coefficients h3, h 4 and 32. Consequently, applying the general rule 
formulated in the previous Section one can write the foUowing formula: 

G(x, y; t) -- (-2rff/~) -N/2 [det h3(t)] -1/2 exp - ~-~ xX~ 1 (t)h4(t)x - 

+ ~ 2 ( 0 h ~ ( 0 h ;  ~ (0~2( t )  - 2 ~ (,h,~2 - q ' ) a  (3.6) 
o 

Therefore in the stationary case it is sufficient to know only two matrices h a 
and h4 to obtain the Green function. Comparing equations (3.5a) and (3.6) 
one can come to a conclusion that the following relations must hold in the 
stationary case 

~k 1 ( - t )  = h4(t);  ~ 3 ( - t )  = -~k3(t); ~ 2 ( - t )  = - h 2 ( t ) ;  

~l( t )  =~k31(t)~2(--t) -- h31(-t)h4(-t)cJ2(t); 
62(t) = X4(t )hi  ~ (t),~l (t) - ~,il  (t) 61 ( - t )  (3.7) 

One can verify that these relations are really the consequence of equations 
(3.3) (one of the possible ways to check these identities is to develop the 
solutions to equation (3.3) into power series with respect to the variable t). 

It is interesting to compare two systems: one described by the Hamiltonian 
/~0(t) = l~lB(t)~l and another having the Hamiltonian/~(t) =/-)o(t) + C(t)~l. It 
can be shown that the corresponding evolution operators are related as follows: 

f)(t2, ta) = S-l(t2)Lr0(t2, tl)~J(tx) x exp i Cfd~" (3.8) 

t l  

where the 2N-dimensional vector f = (f t ,  f2) is an arbitrary solution to the 
equation 

f=  - EBf+ EC (3.8a) 

and the unitary displacement operator S(t) and its kernel S(x~, xl ; t) are 
defined as follows 

S(x2, x l ; t )=g(x2 -x l - f 2 ) exp  ~-~ [ 2 f l x 2 - f x f 2  (3.8b) 
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The origin of the last factor in the right-hand part of equation (3.8) can be 
understood, if one takes into account that the operator S(t) transforms the 
operator H 0 into the operator H(t) only to within a certain term ~(t) 
~q-1 (t)~lo(t)~(t) = [t(t) + ~t). The last exponent does eliminate this additional 
term. Just this factor leads after all to the appearance of the mtegralfo616 2 d r  
in the right-hand part of equation (3.5a). By the way, if the matrix B is non- 
singular, and the Hamiltonian/it does not depend on time, equation (3.8a) has 
the stationary solution f = B -1 C. Therefore the following important formula 
is valid in this case 

it - 1 TrL(t)=Tr(Yo(t)exp(~ThCB C) (3.9) 

The formula (3.5a) is valid only if the matrix 3, 3 is nonsingular. If det ?'3 = 0, 
but det X4 ~ 0, the Green function in the coordinate representation can be 
obtained from equation (3.5d) with the aid of the Fourier transformation. 

Let us assume for the sake of simplicity the Hamiltonian to be hermitian. 
Then the matrix A is real. Since the matrix ?'41 k 3 is symmetrical, a certain 
orthogonal transformation S reducing this matrix to a diagonal form exists: 

X41k3 = S -a diag(#l, 122, - • - 1 2 K ,  0 . . . .  O)S 

Then the result of the calculation of the Fourier integral can be represented as 
follows 

G(x2, x l ; t )  = (-27rih)-~/2(det X4) -1/2 ~-[ t2[ 1/2 exp - -  x 
,=, t2h , ,  ] 

x ~-[ 6(z])exp - 1XeX2~Xxl +2xl(~a -X2X41~2) + 
/=~+1 

z= S(x 2 - •1x l  + X4162) (3.10) 

If det k4 = 0, but det k2 ~ 0 or det kl :~ 0, formula analogous to equation 
(3.10) can be derived from equations (3.5b) or (3.5c). When all four ?,-matrices 
become singular, one of the possible ways to obtain the Green function in the 
coordinate representation is to derive it from the Green function in the co- 
herent states representation, since the latter one always has no singularities. 
Thus we are proceeding to calculating the Green function in the coherent states 
representation. 
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Hereafter we believe the Hamiltonian to be hermitian. This assumption is 
not fundamental, but it enables to simplify formula. An arbitrary hermitian 
quadratic Hamiltonian can be represented as 

/ t =  { If+ doff +fd~fi  + + f d l g  +fi+d~ 'f+] +ffi + f ' a +  +qb(t) (3.11) 

where the N x N-matrix d 1 is symmetrical, and d o is a hermitian matrix. The 
integral of the motion i{ = UdL7 -1 can be expressed as 

= ~(t)f + ~/(t)f + + 7(0 (3.12a) 

if the N-dimensional complex matrices ~ and ~2 and the vector 7 satisfy the 
equations 

ih{ = - ~ d  o +r /d l ;  ~(0) = E  N 

ih47 = - ~  d~ + r7 d~; rl(O) = 0 

ih~/= -~f*  + nf; ~ (0) = o (3.12b) 

Since the commutation relations between the operators A] and A~ must be 
the same as between d] and d~, the following identities must be valid (one 
can verify that these identities follow equation (3.12b)) 

W - rm+ =eN;  ~ = n ~  

~+~ -- ~ *  = EN; r/+~ = ~/* (3.I3) 

The first of these identities leads to the relation (z, ~+z) = (z, z) + (r/+z, 
7/÷z) t> (z, z), z being an arbitrary complex vector. Consequently, the matrix 

is nonsingular, because otherwise such a vector z :~ 0 would exist that ~+z = 0. 
For this reason the Green function in the coherent states representation has no 
singularities. Equations (2.18) and (3.12)-(3.13) lead to the following expression 
for the Green function 

[ 

G(e*,t~; t )=  (det ~)-1/2 exp {--½~*~-lr/~* a~*~- l~  + + 
\ 

+ ½ l t n * ~ - l ~  - ~*~-~  ~, +l~(r* - n * U q ' )  + 

+½~r/*~ -~ ~ -  ~ [f*y+iqb I dr  (3.14) 
0 

Using this formula and equation (2.19) one can obtain the Green function in 
the coordinate representation in the case when all four X-matrices are degenerate. 
We do not write tile corresponding formula because it is very cumbersome. 

The kernel of the unitary transformation corresponding to the canonical 
transformation of the operators g and f÷ (3.12a) was calculated by Berezin 
(1966) both for the Fermi and Bose operators. His result coincides with 
equation (3.14) except the phase factor. 
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4. The Nonstationary Singular Oscillator 

As the second example we consider the nonquadratic one-dimensional 
system with the Hamfltonian 

H=^ ~pl-2 +gx-2 +½w2(t)x2; x > 0 ;  g > - - ~ ;  - t  (4.1) 

Let us introduce the following operators: 

ql =9?2; q2 =/02 + 2g)?-2; 03 =xP +iO~? (4.2) 

One can verify that the integrals of the motion ~)] = Uqj0 -'1 are linear functions 
of the operators qj 

03/ \ - 2~  -2~ ~ +.X/\0~/ 
(4.3) 

The functions X(t) and p(t) satisfy the equation 

+ co2( t )z  = 0 (4.4a) 

and the initial conditions 

X(0) =/2(0) = 1; X(O) = p(O) = 0 (4.4b) 

The Green function is the solution to the equation of the type (2.11) 

t ~T 04 £1 }a(x2,  Xl ; ) = qj (2}a(x2, Xl ; t) (4.5) 

The only solution to this equation turning into zero when xl = x2 = 0 and 
coinciding with the delta-function when t = 0 is 

G(x2, x i ; t) = t~ -1 (XlX2)l/~Jb(XlX212 -1)  x 

xexp ( b +  1)zr+~-~p(/)-x2 +Xx~ 2 ; 

b = ½(1 + 8g) ~/2 (4.6) 

Jb is the Bessel function. 
It is interesting to consider another representation, which has much in 

common with the usual coherent states one. In this representation (let us call 
it the z-representation) each ket-vector { if) is represented by the complex 
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function of the complex argument ~(z*) = (z 1~), the state ]z) being the 
eigenstate of the nonhermitian operator 

1 I 
.,i = ~w ° [@ -- i6ooX) 2 + 2g/x 2 ] = ~ [42 - 6oo2ql - iWo4a] ; 

a2 o = co(t "+ -"~); A lz) = zlz) (4.7) 

I fg  = 0, the operator.d coincides with the operator d 2 , a being the usual 
oscillator annihilation operator. It is convenient to choose the coordinate 
eigenfunctions (x ]z) in the following form (for details see Dodonov et al, 
1972; 1974a) 

(x [z)= (2~OoX) 1/2 exp (---~COoX2 + 2 )  db(x [2~°°z] 1/2); 

<ztzl>=I~(x/(z*zX)) <zl-(Iz>)* (4.8) 

1 b being the modified Bessel function. One can check using the relations given 
in the paper by Dodonov et al. (1974a) that the operators .4, A+ and 2R = 
¼ [A,~+] act on the functions if(z*) according to the following formula 

d 2 d b 2 ) 
Af t (z*)=4  z * - - +  

dz .2  dz* 47; ¢(z*); 

A+¢(z *) = z*¢(z*); 

B~(z*)=(l+2Z*~z, ) tP(z*);  

I/R,.4] = -2A;  [/},A +] = 2,4 + (4.9) 

Evidently, these operators are generators of the group SU(1, 1) (see also the 
paper by Barut and Girardello, 1971). It can be shown that the following 
relation is valid: 

~(z*) = f ~0 '*) /b  (x/(z*y)) dp(y); 

1 
d#(y) = ~ Kb(ly 1) d Rey  d Imy (4.10) 

KB being the Mcdonald function (the modified Besset function of the third 
kind). Therefore the kernel of the unit operator is G(z*,y; O) = lb(x/(z*y)). 
Now we can apply the general scheme of the first section to calculate the 
Green function in the z-representation. One can check that the operators 
UA0 -1 , U.zi+~ r-I and 0/~0 "-1 are linear functions of the operators ,4, A + and 
B, as well as the operators Qj are linear functions of the operators 4j. Conse- 
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quently equation (2.13) is reduced in the case under study to the Bessel equation, 
so that the Green function is 

G(z*,y;t)=UlIb(Utx/(z*y))exp ~(~z*-r~*y) (4.11) 

~(t) and ~/(t) are the solutions to equations (4.12b) with the coefficients 

do(t) = ~o  (1 + ~2(t)/~o2) 

dl (t) = ~ ( 1 -- a92(t)/6Oo 2) 

The multidimensional singular oscillator with the potentials of the type g(0, ~)/r 2 
was considered by Dodonov et al. (1974b). 

5. Green Functions of the Stationary SchrOdinger Equations 
In this Section we consider the Hamiltonians which do not depend on time. 

The Green function of the stationary Schr6dinger equation satisfies the equation 

(~I -E)G(x2, xl ;E) = 6(x 2 - x l )  (5.1) 

Since the time-dependent Green function G(x2, xl ; t) satisfies the equation 

G(t < 0) = 0 (5.2) 

the function G(E) can be obtained by means of the Fourier transformation of 
the function G(t) 

if G(xa, xa ;E) = ~- G(x2, X t ; t)e i(Et/~) dt (5.3) 

o 

(or by means of the Laplace transformation if one makes the substitution 
t = -ihr; note that the integral (5.3) may converge not for all values of the 
parameter E, but this is not essential because G(E) is the analytical function 
of E and can be obtained with the aid of the analytical continuation). We 
want to consider several important particular cases when the function G(E) 
can be calculated exactly. The first example is the N-dimensional isotropic 
oscillator in the coherent states representation:/t = -~(a+a + ~ia+);//= 1. The 
time-dependent Green function is (see equation (3.14)) 

G(Qt*, , ;  t) = exp (---~ + ct*,e -it) (5.4) 
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Using the formula 4.5 (36) from the tables by Erde'lyi et al. (1954) one can 
obtain the following result: 

C ( ~ * , ~ ; E )  = ( 3  - -1  ~*~ . 3  E) e ¢(1,-~ - E; -~*$)  (5.5) 

¢(a; b; z) is the confluent hypergeometric function. This formula in the case 
N = 1 was obtained by Dimashko and Granovsky (1974). The function G(E) 
in the coordinate representation was calculated by Bakhrakh et aL (1972). 

Let us consider the stationary singular oscillator in the z-representation. 
The function G(t) is given by equation (4.11) with ~(t) = exp(iwt) and ~?(t) = 0. 
The function G(E) can be obtained by the Mellin transformation if one makes 
the substitutions t = --iT, Im ~- = 0, ~" > 0 and x = e -  wr, 0 < x < 1 in equation 
(5.3). 
Then the formula 6.8(2) from (Erde'lyi et aL, 1954) leads to the following 
result: 

G(z*,y;E) = [2bcol-'(b + 1)(b + 1 -Elcv)] -1 x 

x 1F2(~(b + 1 - E / w ) ; b  + 1,½(b + 3 -E/w);¼z*y)  (5.6) 

(for the definition of the function 1F2 see Erde'lyi et aL, 1954). As the last 
example we consider the two-dimensional Schr6dinger equation with the 
Hamiltonian 

e 2 

describing the motion of a charged particle in the plane xy perpendicular to 
the uniform magnetic field ~ .  The function G(t) is well known in this case 
(see e.g. Feynman and Hibbs, 1965), so that we do not write it here. The integral 
(5.3) can be calculated if one takes into account equation 4.5 (41) from 
(Erdeqyi et al, 1954). 

So the two-dimensional stationary Green Function is 

m 
G(z2, z I ;E )  = 2 - ~  l ' ( l  -/~7')f(z2' Z l )p -1  ~']ff~' 0(/02); 

/9 2 mco = - ~ ( z  2 -- Zl)2;  z ~- ( x , y ) ;  ff.=E/hco; (4.7) 

. [imco ] 
w = eof/rnc; f (z  2, z l )  = exp[-~--  (XlY2 - x2Yl)  

W is the Whittaker function. The stationary Green function in the three- 
dimensional case was obtained by Gountaroulis (1972). The poles of the 
functions G(E) in all cases yield energy levels. For the residues at these points 
in the last case one can obtain the following expression: 

m e )  
res G(En) = E ~°'x(z2)~°*(z') = ~'h f(z2'z') exp(-~p2)Ln(P2) 

E~ =e.  (5.8) 
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Ln is the Laguerre polynomial, and the summation in this equation is per- 
formed over all eigenstates with the same energy E n = hco(n + ~), n = O, 1, 2 , . .  

6. Conclusion 

The method of  constructing the Green functions with the aid o f  integrals of  
the motion developed in the present article can be successfully applied for 
solving many interesting physical problems, for example, for constructing the 
density matrices of  both equilibrium and nonequilibrium quantum systems 
with quadratic Hamittonians (Dodonov et  aL, 1974c). In the case of  non- 
quadratic systems this method can be a useful tool for the approximate 
calculation of  the density matrix. This method has many common features 
with the path integrals method by Feynman, but it seems to us to be more 
simple from the viewpoint of  calculations. It can be generalized to the case of  
relativistic equations of  Dirac's and Klein-Gordon's types, if one uses the 
proper time method. In particular, this method enables to calculate the Green 
function of  the relativistic particle in external electromagnetic fields obtained 
earlier by Batalin and Fradkin (1970) with the aid of  the path integrals method. 
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